The Resource 50 years of integer programming 1958-2008 : the early years and state-of-the-art surveys, edited by Michael Jèunger ... [et al.], (electronic resource)

50 years of integer programming 1958-2008 : the early years and state-of-the-art surveys, edited by Michael Jèunger ... [et al.], (electronic resource)

Label
50 years of integer programming 1958-2008 : the early years and state-of-the-art surveys
Title
50 years of integer programming 1958-2008
Title remainder
the early years and state-of-the-art surveys
Statement of responsibility
edited by Michael Jèunger ... [et al.]
Title variation
Fifty years of integer programming, 1958-2008
Contributor
Subject
Genre
Language
eng
Additional physical form
Also available in print
Cataloging source
OCoLC
Dewey number
519.77
Illustrations
illustrations
Index
index present
LC call number
T57.74
LC item number
.F548 2009
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Label
50 years of integer programming 1958-2008 : the early years and state-of-the-art surveys, edited by Michael Jèunger ... [et al.], (electronic resource)
Publication
Note
Selected conference papers
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Color
multicolored
Contents
Cover -- Contents -- Part I: The Early Years -- 1 Solution of a Large-Scale Traveling-Salesman Problem -- 2 The Hungarian Method for the Assignment Problem -- 3 Integral Boundary Points of Convex Polyhedra -- 4 Outline of an Algorithm for Integer Solutions to Linear Programs and An Algorithm for the Mixed Integer Problem -- 5 An Automatic Method for Solving Discrete Programming Problems -- 6 Integer Programming: Methods, Uses, Computation -- 7 Matroid Partition -- 8 Reducibility Among Combinatorial Problems -- 9 Lagrangian Relaxation for Integer Programming -- 10 Disjunctive Programming -- Part II: From the Beginnings to the State-of-the-Art -- 11 Polyhedral Approaches to Mixed Integer Linear Programming -- 11.1 Introduction -- 11.2 Polyhedra and the fundamental theorem of integer programming -- 11.3 Union of polyhedra -- 11.4 Split disjunctions -- 11.5 Gomory8217;s mixed-integer inequalities -- 11.6 Polyhedrality of closures -- 11.7 Lift-and-project -- 11.8 Rank -- References -- 12 Fifty-Plus Years of Combinatorial Integer Programming -- 12.1 Combinatorial integer programming -- 12.2 The TSP in the 1950s -- 12.3 Proving theorems with linear-programming duality -- 12.4 Cutting-plane computation -- 12.5 Jack Edmonds, polynomial-time algorithms, and polyhedral combinatorics -- 12.6 Progress in the solution of the TSP -- 12.7 Widening the field of application in the 1980s -- 12.8 Optimization 8801; Separation -- 12.9 State of the art -- References -- 13 Reformulation and Decomposition of Integer Programs -- 13.1 Introduction -- 13.2 Polyhedra, reformulation and decomposition -- 13.3 Price or constraint decomposition -- 13.4 Resource or variable decomposition -- 13.5 Extended formulations: problem specific approaches -- 13.6 Hybrid algorithms and stronger dual bounds -- 13.7 Notes -- References -- Part III: Current Topics -- 14 Integer Programming and Algorithmic Geometry of Numbers -- 14.1 Lattices, integer programming and the geometry of numbers -- 14.2 Informal introduction to basis reduction -- 14.3 The Hermite normal form -- 14.4 Minkowski8217;s theorem -- 14.5 The LLL algorithm -- 14.6 Kannan8217;s shortest vector algorithm -- 14.7 A randomized simply exponential algorithm for shortest vector -- 14.8 Integer programming in fixed dimension -- 14.9 The integer linear optimization problem -- 14.10 Diophantine approximation and strongly polynomial algorithms -- 14.11 Parametric integer programming -- References -- 15 Nonlinear Integer Programming -- 15.1 Overview -- 15.2 Convex integer maximization -- 15.3 Convex integer minimization -- 15.4 Polynomial optimization -- 15.5 Global optimization -- 15.6 Conclusions -- References -- 16 Mixed Integer Programming Computation -- 16.1 Introduction -- 16.2 MIP evolution -- 16.3 MIP challenges -- 16.4 Conclusions -- References -- 17 Symmetry in Integer Linear Programming -- 17.1 Introduction -- 17.2 Preliminaries -- 17.3 Detecting symmetries -- 17.4 Perturbation -- 17.5 Fixing variables -- 17.6 Symmetric polyhedra and related topics -- 17.7 Partitioning problems -- 17.8 Symmetry breaking inequalities -- 17.9 Pruning the enumeration tree -- 17.10 Group representation and operations -- 17.11 Enumerating all non-isomorphic solutions -- 17.12 Furthering the reach of isomorphism pruning -- 17.13 Choice of f
Control code
000048775580
Dimensions
unknown
Extent
1 online resource (xx, 803 p.)
Isbn
9783540682790
Other physical details
ill
http://library.link/vocab/recordID
.b27159413
Specific material designation
remote
System control number
  • (OCoLC)501804250
  • springer3540682740
System details
  • Mode of access: World Wide Web
  • System requirements: Internet connectivity, World Wide Web browser, and Adobe Acrobat reader

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...