The Resource Chaos in switching converters for power management : designing for prediction and control, Enric Rodriguez, Abdelali El Aroudi, Eduard Alarcón

Chaos in switching converters for power management : designing for prediction and control, Enric Rodriguez, Abdelali El Aroudi, Eduard Alarcón

Chaos in switching converters for power management : designing for prediction and control
Chaos in switching converters for power management
Title remainder
designing for prediction and control
Statement of responsibility
Enric Rodriguez, Abdelali El Aroudi, Eduard Alarcón
Cataloging source
Dewey number
index present
Literary form
non fiction
Nature of contents
Chaos in switching converters for power management : designing for prediction and control, Enric Rodriguez, Abdelali El Aroudi, Eduard Alarcón
Bibliography note
Includes bibliographical references and index
  • net
  • Contents note continued: 2.1.1.Dynamics of a VMC Buck Converter Working in CCM -- 2.1.2.Dynamics in VMC Buck Converter Operating in DCM -- 2.2.Power-Oriented Electrical Metrics Characterization of VMC Buck Converter Dynamics -- 2.3.Concluding Remarks -- 3.Design-Oriented Models for Predicting Instabilities in a Buck Switching Power Converter -- 3.1.Design-Oriented Averaged Model: Benefits and Limitations -- 3.2.Ripple-Based Design-Oriented Index: Hypothesis for Predicting FSI -- 3.2.1.Validation of the Ripple-Based Approach by Means of the Switched Model -- 3.2.2.Experimental Validation -- 3.3.Discrete-Time Model Stability Analysis. Relationship with the Ripple-Based Index -- 3.3.1.The Discrete-Time Model -- 3.3.2.Stability Analysis Using the Discrete-Time Model -- 3.3.3.Condition for FSI -- 3.3.4.Stability Analysis Including the Ripple Amplitude -- 3.4.Design-Oriented Ripple-Based Index Mathematical Demonstration -- 3.4.1.Revisiting the State Transition Matrices --
  • Contents note continued: 3.4.2.Critical Ripple Expression -- 3.4.3.Ripple-Based Index Approach Limitations -- 3.5.A Design-Oriented Combined Approach for Predicting Overall Stability Boundaries -- 3.6.Extension to Discontinuous Conduction Mode -- 3.7.Extension to Full-State-Feedback Controller -- 3.7.1.Extension to the PID Compensator -- 3.8.A Frequency Domain Model for Overall Stability Boundary Prediction -- 3.8.1.Discrete-Time Model: From z-Domain to Frequency Domain Representation -- 3.8.2.The Averaged Model and the Discrete-Time Model Frequency Domain Discrepancies -- 3.8.3.The Modulator Frequency Response -- 3.8.4.Extended Discrete-Time Model -- 3.8.5.Complete Design-Oriented Frequency Domain Model -- 3.8.6.Extension to a PI Compensator -- 3.9.Concluding Remarks -- 4.Control of FSI in Switching Power Converters -- 4.1.Introduction -- 4.2.Time-Delay-Based Chaos Controllers -- 4.2.1.The Time-Delay Feedback Controller -- 4.2.2.Extended Time-Delay Feedback Controller --
  • Contents note continued: 4.3.Notch-Based Chaos Controllers -- 4.4.Repetitive Chaos Controllers -- 4.5.Narrow Band Amplifier Chaos Controller -- 4.6.Towards a Low-Ripple High-Stability Regulation: Combining Chaos Controller with Output Ripple Reduction -- 4.6.1.The LC Divider: Combining the Low Ripple and FSI Controller -- 4.6.2.Application to CMC -- 4.7.Stability Margins and Power Metrics Comparative Between Controllers -- 4.8.Concluding Remarks -- 5.Extension to Alternative Topologies and Functionalities Aiming Power Management Integrated Circuits -- 5.1.The Three-Level Buck-Based Converter: Characterization, Modeling -- 5.1.1.Characterizing Instabilities in a Three-Level Buck Converter -- 5.1.2.Low Capacitance Value of the Floating Capacitor -- 5.2.Experimental Results -- 5.3.Three-Level Buck Converter Discrete-Time Model for FSI Prediction -- 5.4.Ripple-Based Design-Oriented Index for Fast-Scale Instability Prediction --
  • Contents note continued: 5.4.1.Effect of Low Floating Capacitor and Integration Limits -- 5.5.Buck-Based Switching Power Amplifier: Modeling and Characterization -- 5.5.1.Buck-Based Switching Power Amplifier Instabilities: Design-Space Exploration -- 5.5.2.Qualitative Characterization of Instabilities in a Buck-Based Power Switching Amplifier with Time-Varying Sinusoidal Reference -- 5.5.3.Description of the Switching Amplifier Dynamics by a Discrete-Time Model -- 5.5.4.Characterizing the Stability Boundary from the Discrete Time Model
  • Machine generated contents note: 1.Introduction -- 1.1.Key Enabling Technologies for Power Management Subsystems -- 1.1.1.Integration and Miniaturization -- 1.1.2.Advanced Functionality Power Management Circuits -- 1.2.Modern Power Management Approaches -- 1.2.1.Non-Conventional Switching Power Converter Topologies -- 1.2.2.Non-Conventional Control -- 1.2.3.Functionality: From Regulation to Tracking -- 1.2.4.Modern Power Management Architectures Case Examples -- 1.3.Dynamics and Stability Models of Switching Power Converters -- 1.3.1.Overview of Nonlinear Dynamical Systems -- 1.3.2.Switching Power Converters Dynamics and Modeling -- 1.3.3.The Discrete-Time System -- 1.3.4.Design-Oriented Circuit-Based Models: The Average Model -- 1.4.Chaos Control Methods -- 1.4.1.Via External Force -- 1.4.2.Via Feedback Techniques -- 2.Complex Behavior of VMC Buck Converter: Characterization -- 2.1.Design-Space Characterization of a Voltage-Mode Buck Converter --
Control code
24 cm
x, 176 p.
Other physical details
System control number

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...