The Resource Frontiers in the study of chaotic dynamical systems with open problems, edited by Elhadj Zeraoulia, Julien Clinton Sprott

Frontiers in the study of chaotic dynamical systems with open problems, edited by Elhadj Zeraoulia, Julien Clinton Sprott

Label
Frontiers in the study of chaotic dynamical systems with open problems
Title
Frontiers in the study of chaotic dynamical systems with open problems
Statement of responsibility
edited by Elhadj Zeraoulia, Julien Clinton Sprott
Contributor
Editor
Subject
Language
eng
Member of
Cataloging source
BTCTA
Dewey number
003.857
Illustrations
illustrations
Index
index present
Literary form
non fiction
Nature of contents
bibliography
Series statement
World Scientific series on nonlinear science. Series B
Series volume
v. 16
Label
Frontiers in the study of chaotic dynamical systems with open problems, edited by Elhadj Zeraoulia, Julien Clinton Sprott
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and indexes
http://library.link/vocab/branchCode
  • net
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • 12.5.
  • Theoretical Models of Gene Interaction
  • 12.6.
  • Conclusions
  • References
  • 13.
  • How to Transform a Type of Chaos in Dynamical Systems?
  • J.C. Sprott
  • 13.1.
  • Introduction
  • 12.3.
  • 13.2.
  • Hyperbolification of Dynamical Systems
  • 13.3.
  • Transforming Dynamical Systems to Lorenz-Type Chaos
  • 13.4.
  • Transforming Dynamical Systems to Quasi-Attractor Systems
  • 13.5.
  • A Common Classification of Strange Attractors of Dynamical Systems
  • References
  • Statement of the Problem
  • 12.3.1.
  • A First Attempt
  • 12.3.2.
  • Examples
  • 12.4.
  • Experimental Information
  • 4.3.
  • Open Problems
  • 4.4.
  • Conclusions
  • References
  • 5.
  • On the Study of Chaotic Systems with Non-Horseshoe Template
  • S. Basak
  • 5.1.
  • Introduction
  • 4.1.
  • 5.2.
  • Formulation
  • 5.3.
  • Topological Analysis and Its Invariants
  • 5.4.
  • Application to Circuit Data
  • 5.4.1.
  • Search for Close Return
  • 5.4.2.
  • Topological Constant
  • Introduction
  • 5.4.3.
  • Template Identification
  • 5.4.4.
  • Template Verification
  • 5.5.
  • Conclusion and Discussion
  • References
  • 6.
  • Instability of Solutions of Fourth and Fifth Order Delay Differential Equations
  • C. Tunc
  • 4.2.
  • 6.1.
  • Introduction
  • 6.2.
  • Open Problems
  • 6.3.
  • Conclusion
  • References
  • 7.
  • Some Conjectures About the Synchronizability and the Topology of Networks
  • S. Fernandes
  • Examples
  • 7.1.
  • Introduction
  • 7.2.
  • Related and Historical Problems About Network Synchronizability
  • 7.3.
  • Some Physical Examples About the Real Applications of Network Synchronizability
  • 4.2.1.
  • Dynamical Properties of Chaotic Complex Chen System
  • 4.2.2.
  • Hyperchaotic Complex Lorenz Systems
  • 7.5.3.
  • Discussion
  • 7.6.
  • Symbolic Dynamics and Networks Synchronization
  • References
  • 8.
  • Wavelet Study of Dynamical Systems Using Partial Differential Equations
  • E.B. Postnikov
  • 8.1.
  • Definitions and State of Art
  • 7.4.
  • 8.2.
  • Open Problems in the Continuous Wavelet Transform and a Topology of Bounding Tori
  • 8.3.
  • The Evaluation of the Continuous Wavelet Transform Using Partial Differential Equations in Non-Cartesian Co-ordinates and Multidimensional Case
  • 8.4.
  • Discussion of Open Problems
  • References
  • 9.
  • Combining the Dynamics of Discrete Dynamical Systems
  • J.S. Canovas
  • Preliminaries
  • 9.1.
  • Introduction
  • 9.2.
  • Basic Definitions and Notations
  • 9.3.
  • Statement of the Problems
  • 9.3.1.
  • Dynamic Parrondo's Paradox and Commuting Functions
  • 9.3.2.
  • Dynamics Shared by Commuting Functions
  • 7.5.
  • Complete Clustered Networks
  • 7.5.1.
  • Clustering Point on Complete Clustered Networks
  • 7.5.2.
  • Classification of the Clustering and the Amplitude of the Synchronization Interval
  • Code Structure for Pairs of Linear Maps with Some Open Problems
  • P. Troshin
  • 10.1.
  • Introduction
  • 10.2.
  • Iterated Function System
  • 10.3.
  • Attractor of Pair of Linear Maps
  • 10.4.
  • Code Structure of Pair of Linear Maps
  • 9.3.3.
  • 10.5.
  • Sufficient Conditions for Computing the Code Structure
  • 10.6.
  • Conclusion and Open Questions
  • References
  • 11.
  • Recent Advances in Open Billiards with Some Open Problems
  • C.P. Dettmann
  • 11.1.
  • Introduction
  • Computing Problems for Large Periods T
  • 11.2.
  • Closed Dynamical Systems
  • 11.3.
  • Open Dynamical Systems
  • 11.4.
  • Open Billiards
  • 11.5.
  • Physical Applications
  • 11.6.
  • Discussion
  • 9.3.4.
  • References
  • 12.
  • Open Problems in the Dynamics of the Expression of Gene Interaction Networks
  • V. Naudot
  • 12.1.
  • Introduction
  • 12.2.
  • Attractors for Flows and Diffeomorphisms
  • Commutativity Problems
  • 9.3.5.
  • Generalization to Continuous Triangular Maps on the Square
  • References
  • 10.
  • 1.3.
  • Computational Schemes and What Lorenz's Chaos Is
  • 1.4.
  • Discussion
  • 1.5.
  • Appendix: Another Way to Show that Chaos Theory Suffers From Flaws
  • References
  • 2.
  • Nonexistence of Chaotic Solutions of Nonlinear Differential Equations
  • L.S. Yao
  • Machine generated contents note:
  • 2.1.
  • Introduction
  • 2.2.
  • Open Problems About Nonexistence of Chaotic Solutions
  • References
  • 3.
  • Some Open Problems in the Dynamics of Quadratic and Higher Degree Polynomial ODE Systems
  • J. Heidel
  • 3.1.
  • First Open Problem
  • 1.
  • 3.2.
  • Second Open Problem
  • 3.3.
  • Third Open Problem
  • 3.4.
  • Fourth Open Problem
  • 3.5.
  • Fifth Open Problem
  • 3.6.
  • Sixth Open Problem
  • Problems with Lorenz's Modeling and the Algorithm of Chaos Doctrine
  • References
  • 4.
  • On Chaotic and Hyperchaotic Complex Nonlinear Dynamical Systems
  • G.M. Mahmoud
  • Y. Lin
  • 1.1.
  • Introduction
  • 1.2.
  • Lorenz's Modeling and Problems of the Model
Control code
ocn756780625
Dimensions
unknown
Extent
1 online resource (viii, 258 pages)
File format
unknown
Form of item
online
Isbn
9789814340700
Level of compression
unknown
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
Quality assurance targets
not applicable
http://library.link/vocab/recordID
.b35760515
Reformatting quality
unknown
Sound
unknown sound
Specific material designation
remote
System control number
  • (OCoLC)756780625
  • ebscoaca9814340707

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...