The Resource MEMS linear and nonlinear statics and dynamics, by Mohammad I. Younis

MEMS linear and nonlinear statics and dynamics, by Mohammad I. Younis

Label
MEMS linear and nonlinear statics and dynamics
Title
MEMS linear and nonlinear statics and dynamics
Statement of responsibility
by Mohammad I. Younis
Creator
Subject
Language
eng
Cataloging source
UKM
Dewey number
621.3810113
Illustrations
illustrations
Index
index present
LC call number
TK7875
LC item number
.Y68 2010
Literary form
non fiction
Nature of contents
bibliography
Series statement
Microsystems
Series volume
20
Label
MEMS linear and nonlinear statics and dynamics, by Mohammad I. Younis
Publication
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Contents
  • Contents note continued: 2.8.Numerical Integration -- 2.9.MEMS Band-Pass Filters -- Problems -- References -- 3.1.Electrothermal Actuation -- 3.1.1.U-Shaped Actuator -- 3.1.2.V-Beam Actuator -- 3.1.3.Bimorph Actuator -- 3.2.Piezoelectric Actuation and Detection -- 3.3.Electromagnetic and Magnetic Actuation -- 3.4.Piezoresistive Detection -- 3.5.Electrostatic Actuation and Detection -- 3.5.1.Simple Parallel-Plate Capacitors -- 3.5.2.Torsional Actuators and Micromirrors -- 3.5.3.Comb-Drive Devices -- 3.6.Resonant Sensors -- Problems -- References -- 4.1.Stiffness of Microstructures -- 4.1.1.Experimental Methods -- 4.1.2.Computational Methods -- 4.1.3.Analytical Methods -- 4.2.Spring-Mass Models -- 4.3.Damping in MEMS -- 4.3.1.Mechanisms of Energy Losses -- 4.3.2.Air Damping Fundamentals -- 4.3.3.Damping Dependence on Pressure: Newell's Classification -- 4.3.4.Drag Force -- 4.3.5.Squeeze-Film Damping -- 4.3.6.Slide-Film Damping -- 4.3.7.Intrinsic Damping --
  • Contents note continued: 4.3.8.Extracting Damping Coefficients Experimentally -- Problems -- References -- 5.1.Introduction -- 5.2.Nondimensionalization -- 5.3.Fixed Points and Linearization -- 5.4.Bifurcations of Fixed Points -- 5.4.1.Saddle-Node Bifurcation -- 5.4.2.Transcritical Bifurcation -- 5.4.3.Pitchfork Bifurcation -- 5.4.4.Hopf Bifurcation -- 5.5.Phase Portraits -- 5.5.1.Phase Diagram of a Parallel-Plate Capacitor and the Dynamic Pull-in Concept -- 5.5.2.Phase Diagram of a Double-Sided Capacitor -- 5.6.Step-Input Actuation of Capacitive RF Switches -- 5.7.Dynamics of Torsional Actuators and Micromirrors -- 5.7.1.Single-Degree-of-Freedom Model -- 5.7.2.Two-Degree-of-Freedom Model -- 5.8.Nonlinear Oscillations -- 5.8.1.The Effect of a Constant Force -- 5.8.2.Free Vibration in the Presence of Nonlinearities -- 5.8.3.Forced Harmonic Vibration -- 5.8.4.Parametric Excitation -- 5.8.5.Self-Excited Oscillators -- 5.9.Modal Interaction, Chaos, and Fractal Behavior -- Problems --
  • Contents note continued: 6.12.The Static Behavior of Beams Under Electrostatic Force -- 6.12.1.Cantilever Microbeams -- 6.12.2.Clamped-Clamped Microbeams -- 6.12.3.Microbeams with Partial Electrodes and Initial Curvature -- 6.13.The Natural Frequencies Under Electrostatic Force -- 6.14.Pull-in Time of RF Switches -- 6.15.Resonators Under AC + DC Excitation -- 6.16.Atomic Force Microscopes -- 6.16.1.Introduction -- 6.16.2.Interaction Forces -- 6.16.3.AFM Models -- 6.16.4.AFM Under Lennard-Jones Force -- 6.17.Beams Under Capillary Forces -- 6.18.Coupled-Field Damping of Beams -- 6.18.1.Squeeze-Film Damping -- 6.18.2.Thermoelastic Damping -- Problems -- References -- 7.1.The Device and Experimental Setup -- 7.2.Initial Characterization and Parameters Extraction -- 7.3.Experimental Data for Large DC and AC Excitations -- 7.3.1.Primary Resonance -- 7.3.2.Subharmonic Resonance -- 7.4.Simulations Using Long-Time Integration -- 7.5.Simulations Using the Shooting Technique --
  • Contents note continued: 7.5.1.The Shooting Method -- 7.5.2.Results -- 7.6.Basin of Attraction Analysis -- 7.7.Attractors Tracking and the Integrity Factor -- 7.8.Remarks on Resonant Dynamic Pull-in -- 7.9.Mass Detection Application -- 7.10.Controlling Resonant Dynamic Pull-in -- 7.10.1.Introduction -- 7.10.2.Simulation and Experimental Results -- 7.10.3.Integrity Analysis -- Problems -- References -- 8.1.Introduction -- 8.2.Mechanical Shock -- 8.3.Modeling Shock in Lumped-Parameter Models -- 8.4.The Shock-Response Spectrum -- 8.5.Modeling Shock on Microbeams -- 8.6.Computationally Efficient Approach for Microstructures -- 8.7.High-g Shock Response -- 8.8.The Combined Effect of Shock and Electrostatic Forces -- 8.8.1.Single-Degree-of-Freedom Model -- 8.8.2.Beam Model -- 8.8.3.Switch Application -- 8.8.4.Experiments -- 8.9.Resonators Under Shock -- 8.9.1.Simulations -- 8.9.2.Experimental Results and Comparison with Simulations -- 8.10.The Effect of the PCB Motion -- Problems --
  • Contents note continued: References -- 6.1.The Linear Equation of Motion -- 6.1.1.Boundary Conditions -- 6.1.2.Beams Made of Different Material Layers -- 6.2.The Static Response -- 6.3.Residual Stresses and Nonideal Supports of Cantilever Microbeams -- 6.4.Natural Frequencies and Modeshapes -- 6.4.1.Nondimensionalization -- 6.4.2.Flexible (Nonideal) Supports -- 6.4.3.Cantilever Beam with a Lumped Mass at the Tip -- 6.5.The Effect of Axial Load on the Natural Frequency and the Buckling Limit -- 6.6.The Orthogonality of Modeshapes -- 6.7.Forced Vibrations and Modal Analysis -- 6.7.1.Undamped Response with no Axial Load -- 6.7.2.Adding Axial Force -- 6.7.3.Adding Damping -- 6.8.A Nonlinear Model of Beams with Midplane Stretching -- 6.9.Other Nonlinear Models of Beams -- 6.10.The Galerkin Discretization and Reduced-Order Modeling -- 6.10.1.The Galerkin Method -- 6.10.2.Beams with Midplane Stretching -- 6.11.Reduced-Order Model of Beams Under Electrostatic Force --
  • Contents note continued: References
  • Machine generated contents note: 1.1.What Are MEMS and Why They Are Attractive? -- 1.2.Why We Need Modeling and Simulation Tools? -- 1.3.Challenges of MEMS Modeling and Simulations -- 1.4.Coupled-Field MEMS Phenomena -- 1.4.1.Squeeze-Film Damping -- 1.4.2.Thermoelastic Damping -- 1.4.3.Pull-in Instability -- 1.4.4.Stiction Due to Capillary Forces -- 1.5.The State-of-the-Art of MEMS Modeling and Simulations -- Problems -- References -- 2.1.Introduction -- 2.2.Free Vibration of Single-Degree-of-Freedom Systems -- 2.2.1.Undamped Vibration -- 2.2.2.Damped Vibration -- 2.3.Forced Harmonic Excitation of Single-Degree-of-Freedom Systems -- 2.4.Vibrating MEMS Gyroscopes -- 2.5.Base Excitations of SDOF Systems and Accelerometers Principles -- 2.6.Response of SDOF Systems to Arbitrary Excitation -- 2.7.Vibrations of Two-Degree-of-Freedom Systems -- 2.7.1.Undamped Free Vibration and Eigenvalue Problem -- 2.7.2.Modal Analysis -- 2.7.3.Resonances in 2-DOF Systems --
Control code
000048515126
Dimensions
24 cm
Extent
xv, 453 p.
Isbn
9781441960191
Lccn
2011930834
Other physical details
ill.
http://library.link/vocab/recordID
.b26194740
System control number
springer1441960198

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...