The Resource Missing data, Paul D. Allison

Missing data, Paul D. Allison

Label
Missing data
Title
Missing data
Statement of responsibility
Paul D. Allison
Title variation
Sage research methods online
Creator
Subject
Language
eng
Summary
Using numerous examples and practical tips, this book offers a non-technical explanation of the standard methods for missing data (such as listwise or casewise deletion) as well as two newer methods, maximum likelihood and multiple imputation
Member of
Cataloging source
SFB
Dewey number
519.54
Illustrations
illustrations
Index
index present
LC call number
QA276
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Quantitative applications in the social sciences
Series volume
136
Target audience
specialized
Label
Missing data, Paul D. Allison
Publication
Bibliography note
  • Includes bibliographical references
  • Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
1. Introduction -- 2. Assumptions ; Missing Completely at Random ; Missing at Random ; Ignorable ; Nonignorable -- 3. Conventional Methods ; Listwise ; Deletion; Pairwise Deletion ; Dummy Variable Adjustment ; Imputation -- 4. Maximum Likelihood ; Review of Maximum Likelihood ; ML With Missing Data ; Contingency Table Data ; Linear Models With Normally Distributed Data ; The EM Algorithm ; EM Example ; Direct ML ; Direct ML Example -- 5. Multiple Imputation: Bascis ; Single Random Imputation ; Multiple Random Imputation ; Allowing for Random Variation in the Parameter Estimates ; Multiple Imputation Under the Multivariate Normal Model ; Data Augmentation for the Multivariate Normal Model ; Convergence in Data Augmentation ; Sequential Verses Parallel Chains of Data Augmentation ; Using the Normal Model for Nonnormal or Categorical Data ; Exploratory Analysis -- 6. Multiple Imputation: Complications ; Interactions and Nonlinearities in MI ; Compatibility of the Imputation Model and the Analysis Model ; Role of the Dependent Variable in Imputation ; Using Additional Variables in the Imputation Process ; Other Parametric Approaches to Multiple Imputation ; Nonparametric and Partially Parametric Methods ; Sequential Generalized Regression Models ; Linear Hypothesis Tests and Likelihood Ratio Tests -- 7. Nonignorable Missing Data ; Two Classes of Models ; Heckman's Model for Sample Selection Bias ; ML Estimation With Pattern-Mixture Models ; Multiple Imputation With Pattern-Mixture Models
Control code
ocn738380158
Extent
1 online resource (vi, 91 pages)
Form of item
online
Isbn
9781452207902
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
http://library.link/vocab/recordID
.b37000561
Specific material designation
remote
System control number
  • (OCoLC)738380158
  • srmo1412985072

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...