The Resource Polymer adhesion, friction, and lubrication, edited by Hongbo Zeng, University of Alberta, Edmonton, AB, Canada

Polymer adhesion, friction, and lubrication, edited by Hongbo Zeng, University of Alberta, Edmonton, AB, Canada

Label
Polymer adhesion, friction, and lubrication
Title
Polymer adhesion, friction, and lubrication
Statement of responsibility
edited by Hongbo Zeng, University of Alberta, Edmonton, AB, Canada
Contributor
Editor
Subject
Language
eng
Summary
Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, sy
Cataloging source
DLC
Dewey number
620.1/92042
Index
index present
LC call number
TJ1075
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Label
Polymer adhesion, friction, and lubrication, edited by Hongbo Zeng, University of Alberta, Edmonton, AB, Canada
Publication
Note
Includes index
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover; Title page; Copyright page; Contents; Preface; Contributors; 1: Fundamentals of Surface Adhesion, Friction, and Lubrication; 1.1 Introduction; 1.2 Basic Concepts; 1.2.1 Intermolecular and Surface Forces; 1.2.2 Surface Energy; 1.3 Adhesion and Contact Mechanics; 1.3.1 Hertz Model; 1.3.2 Johnson-Kendall-Roberts Model; 1.3.3 Derjaguin-Muller-Toporov Model; 1.3.4 Maugis Model; 1.3.5 Indentation; 1.3.6 Effect of Environmental Conditions on Adhesion; 1.3.7 Adhesion of Rough Surfaces; 1.3.8 Adhesion Hysteresis; 1.4 Friction; 1.4.1 Amontons' Laws of Friction; 1.4.2 The Basic Models of Friction
  • 1.4.3 Stick-Slip Friction1.4.4 Directionality of Friction; 1.5 Rolling Friction; 1.6 Lubrication; 1.7 Wear; 1.8 Real Contact Area; 1.9 Modern Tools in Tribology; 1.9.1 X-Ray Photoelectron Spectroscopy; 1.9.2 Scanning Electron Microscopy; 1.9.3 Infrared Spectroscopy; 1.9.4 Optical Tweezers or Optical Trapping; 1.9.5 Atomic Force Microscope (AFM); 1.9.6 Surface Forces Apparatus (SFA); 1.10 Computer Simulations in Tribology; Acknowledgment; References; 2: Adhesion and Tribological Characteristics of Ion-Containing Polymer Brushes Prepared by Controlled Radical Polymerization; 2.1 Introduction
  • 2.2 Controlled Synthesis of Ion-Containing Polymer Brushes2.3 Wettability of Polyelectrolyte Brushes; 2.4 Adhesion and Detachment between Polyelectrolyte Brushes; 2.5 Water Lubrication and Frictional Properties of Polyelectrolyte Brushes; 2.6 Conclusions; References; 3: Lubrication and Wear Protection of Natural (Bio)Systems; 3.1 Introduction; 3.1.1 What Makes Biolubrication Unique?; 3.1.2 Theory of Friction; 3.2 Boundary Lubrication; 3.2.1 Dry/Contact Lubrication; 3.2.2 Thin Film Boundary Lubrication; 3.2.3 Hydration Layers; 3.2.4 Intermediate Boundary Lubrication
  • 3.2.5 Thick Film Boundary Lubrication3.2.6 Hyaluronic Acid (HA) Interfacial Layer; 3.3 Fluid Film Lubrication; 3.3.1 Elastohydrodynamic Lubrication in Biological Systems; 3.3.2 Weeping Lubrication; 3.4 Multimodal Lubrication; 3.4.1 Mixed Lubrication and the "Stribeck Curve"; 3.4.2 Adaptive Lubrication; 3.4.3 Mechanically Controlled Adaptive Lubrication; 3.5 Wear; 3.5.1 How Are Friction and Wear Related?; 3.5.2 Characterization, Measurement, and Evaluation of Wear; 3.5.3 Biological Strategies for Controlling Wear; 3.5.4 Wear of Soft, Compliant Biological Materials
  • 3.5.5 Controlling Wear in Hard Biological Materials: Self-Sharpening Mechanism in Rodent Teeth3.6 Biomimetic and Engineering Approaches of Biolubrication; 3.6.1 Hydrogel Coatings as Artificial Cartilage Materials; 3.6.2 Mimicking Synovial Fluid Lubricating Properties: Polyelectrolytes Lubrication; 3.6.3 Superlubrication by Aggrecan Mimics: End-Grafted Polymers and the Brush Paradigm; 3.6.4 Perspectives and Future Research Avenues; Acknowledgment; References; 4: Polymer Brushes and Surface Forces; 4.1 Introduction; 4.2 Some Generic Properties of Polymer Brushes
Control code
ocn819741925
Extent
1 online resource
Form of item
online
Isbn
9781118505182
Lccn
2012047701
Media category
computer
Media MARC source
rdamedia
Media type code
c
http://library.link/vocab/ext/overdrive/overdriveId
450259
http://library.link/vocab/recordID
.b28150910
Specific material designation
remote
System control number
  • (OCoLC)819741925
  • pebco0470916273

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...