The Resource Principles of cellular engineering : understanding the biomolecular interface, edited by Michael R. King

Principles of cellular engineering : understanding the biomolecular interface, edited by Michael R. King

Label
Principles of cellular engineering : understanding the biomolecular interface
Title
Principles of cellular engineering
Title remainder
understanding the biomolecular interface
Statement of responsibility
edited by Michael R. King
Contributor
Subject
Language
eng
Summary
This comprehensive work discusses novel biomolecular surfaces that have been engineered to either control or measure cell function at the atomic, molecular, and cellular levels. Each chapter presents real results, concepts, and expert perspectives of how cells interact with biomolecular surfaces, with particular emphasis on interactions within complex mechanical environments such as in the cardiovascular system. In addition, the book provides detailed coverage of inflammation and cellular immune response as a useful model for how engineering concepts and tools may be effectively applied to complex systems in biomedicine.-Accessible to biologists looking for new ways to model their results and engineers interested in biomedical applications -Useful to researchers in biomaterials, inflammation, and vascular biology -Excellent resource for graduate students as a textbook in cell & tissue engineering or cell mechanics courses
Cataloging source
OPELS
Dewey number
660.6
Illustrations
  • illustrations
  • plates
Index
index present
LC call number
QH604.2
LC item number
.P75 2006eb
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Label
Principles of cellular engineering : understanding the biomolecular interface, edited by Michael R. King
Publication
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • PART I. NEUTROPHIL ADHESION -- Adhesion of flowing neutrophils to model vessel surfaces -- Bond formation during cell compression -- A flow chamber for capillary networks -- Membrane dynamics during neutrophil recruitment -- Hydrodynamic recruitment of cells to reactive surfaces -- PART II: CELL-SUBSTRATE ADHESION -- Cell tensegrity models and cell-substrate interactions -- Use of hydrodynamic shear stress to analyze cell adhesion -- Traction forces exerted by endothelial cells -- Control of endothelial cell adhesion by mechanotransmission -- PART III. ENGINEERED BIOMIMETIC SURFACES -- Realistic atomistic modeling of protein adsorption to ceramic biomaterials -- Cell responses to micro- and nano-topography
  • Traction forces exerted by adherent cells / by Cynthia A. Reinhart-King and Daniel A. Hammer -- Control of endothelial cell adhesion by mechanotransmission from cytoskeleton to substrate / by Rosalind E. Mott and Brian P. Helmke -- Use of hydrodynamic shear stress to analyze cell adhesion / by David Boettiger -- Cellular tensegrity models and cell-substrate interactions / by Dimitrije Stamenović, Ning Wang, and Donald E. Ingber -- Bond formation during cell compression / by Elena Lomakina and Richard E. Waugh -- Dynamics of the neutrophil surface during emigration from blood / Thomas R. Gaborski and James L. McGrath -- Glycocalyx regulation of cell adhesion / Philippe Robert, Laurent Limozin, Anne-Marie Benoliel, Anne Pierres, and Pierre Bongrand -- Atomistic modeling of protein adsorption to ceramic biomaterials in water: a first step toward realistic simulation of the biomaterials surface in vivo / by Alan H. Goldstein -- Model cell membrane surfaces for measuring receptor-ligand interactions / by Craig D. Blanchette, Timothy V. Ratto, and Marjorie L. Longo -- A flow chamber for capillary networks: leukocyte adhesion in capillary sized, ligand-coated micropipettes / by David F.J. Tees, Prithu Sundd, and Douglas J. Goetz -- Adhesion of flowing neutrophils to model vessel surfaces: constraint and regulation by the local hemodynamic environment / Gerard B. Nash and G. Ed Rainger -- Hydrodynamic interactions between cells on reactive surfaces / Dooyoung Lee and Michael R. King -- Dynamics of platelet aggregation and adhesion to reactive surfaces under flow / Nipa A. Mody and Michael R. King
Control code
ocn162130367
Dimensions
unknown
Extent
1 online resource (xv, 314 pages, [7] pages of plates)
Form of item
online
Isbn
9780123693921
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations (some color)
http://library.link/vocab/ext/overdrive/overdriveId
113099:113187
http://library.link/vocab/recordID
.b22976772
Specific material designation
remote
System control number
  • (OCoLC)162130367
  • pebcs0080539637

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...