The Resource Resonant MEMS : fundamentals, implementation and application, edited by Oliver Brand, Isabelle Dufour, Stephen M. Heinrich and Fabien Josse

Resonant MEMS : fundamentals, implementation and application, edited by Oliver Brand, Isabelle Dufour, Stephen M. Heinrich and Fabien Josse

Label
Resonant MEMS : fundamentals, implementation and application
Title
Resonant MEMS
Title remainder
fundamentals, implementation and application
Statement of responsibility
edited by Oliver Brand, Isabelle Dufour, Stephen M. Heinrich and Fabien Josse
Contributor
Editor
Subject
Language
eng
Summary
Part of the AMN book series, this book covers the principles, modeling and implementation as well as applications of resonant MEMS from a unified viewpoint. It starts out with the fundamental equations and phenomena that govern the behavior of resonant MEMS and then gives a detailed overview of their implementation in capacitive, piezoelectric, thermal and organic devices, complemented by chapters addressing the packaging of the devices and their stability. The last part of the book is devoted to the cutting-edge applications of resonant MEMS such as inertial, chemical and biosensors, fluid properties sensors, timing devices and energy harvesting systems
Member of
Cataloging source
N$T
Dewey number
621.381
Illustrations
illustrations
Index
index present
LC call number
TK7875
Literary form
non fiction
Nature of contents
  • dictionaries
  • bibliography
Series statement
Advanced micro and nanosystems
Label
Resonant MEMS : fundamentals, implementation and application, edited by Oliver Brand, Isabelle Dufour, Stephen M. Heinrich and Fabien Josse
Publication
Antecedent source
unknown
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • net
Carrier category
online resource
Carrier category code
cr
Carrier MARC source
rdacarrier
Color
multicolored
Content category
text
Content type code
txt
Content type MARC source
rdacontent
Contents
  • Cover -- Title Page -- Copyright -- Contents -- Series editor's preface -- Preface -- About the Volume Editors -- List of Contributors -- Part I: Fundamentals -- Chapter 1 Fundamental Theory of Resonant MEMS Devices -- 1.1 Introduction -- 1.2 Nomenclature -- 1.3 Single-Degree-of-Freedom (SDOF) Systems -- 1.3.1 Free Vibration -- 1.3.2 Harmonically Forced Vibration -- 1.3.3 Contributions to Quality Factor from Multiple Sources -- 1.4 Continuous Systems Modeling: Microcantilever Beam Example -- 1.4.1 Modeling Assumptions -- 1.4.2 Boundary Value Problem for a Vibrating Microcantilever -- 1.4.3 Free-Vibration Response of Microcantilever -- 1.4.4 Steady-State Response of a Harmonically Excited Microcantilever -- 1.5 Formulas for Undamped Natural Frequencies -- 1.5.1 Simple Deformations (Axial, Bending, Twisting) of 1D Structural Members: Cantilevers and Doubly Clamped Members ("Bridges") -- 1.5.1.1 Axial Vibrations (Along x-Axis) -- 1.5.1.2 Torsional Vibrations (Based on h{u226A}b) (Twist About x-Axis) -- 1.5.1.3 Flexural (Bending) Vibrations -- 1.5.2 Transverse Deflection of 2D Structures: Circular and Square Plates with Free and Clamped Supports -- 1.5.3 Transverse Deflection of 1D Membrane Structures ("Strings") -- 1.5.4 Transverse Deflection of 2D Membrane Structures: Circular and Square Membranes under Uniform Tension and Supported along Periphery -- 1.5.5 In-Plane Deformation of Slender Circular Rings -- 1.5.5.1 Extensional Modes -- 1.5.5.2 In-Plane Bending Modes -- 1.6 Summary -- Acknowledgment -- References -- Chapter 2 Frequency Response of Cantilever Beams Immersed in Viscous Fluids -- 2.1 Introduction -- 2.2 Low Order Modes -- 2.2.1 Flexural Oscillation -- 2.2.2 Torsional Oscillation -- 2.2.3 In-Plane Flexural Oscillation -- 2.2.4 Extensional Oscillation -- 2.3 Arbitrary Mode Order -- 2.3.1 Incompressible Flows
  • 11.4.2 Single Particle and Single Cell Measurements -- 11.4.3 Surface-Based Measurements -- 11.5 Conclusion -- References -- Chapter 12 Hermetic Packaging for Resonant MEMS -- 12.1 Introduction -- 12.2 Overview of Packaging Types -- 12.3 Die-Level Vacuum-Can Packaging -- 12.4 Wafer Bonding for Device Packaging -- 12.5 Thin Film Encapsulation-Based Packaging -- 12.6 Getters -- 12.7 The "Stanford epi-Seal Process" for Packaging of MEMS Resonators -- 12.8 Conclusion -- References -- Chapter 13 Compensation, Tuning, and Trimming of MEMS Resonators -- 13.1 Introduction -- 13.2 Compensation Techniques in MEMS Resonators -- 13.2.1 Compensation for Thermal Effects -- 13.2.1.1 Engineering the Geometry -- 13.2.1.2 Doping -- 13.2.1.3 Composite Resonators -- 13.2.2 Compensation for Manufacturing Uncertainties -- 13.2.3 Compensation and Control of Quality Factor -- 13.2.4 Compensation for Polarization Voltage -- 13.3 Tuning Methods in MEMS Resonators -- 13.3.1 Device Level Tuning -- 13.3.1.1 Electrostatic Tuning -- 13.3.1.2 Thermal Tuning -- 13.3.1.3 Piezoelectric Tuning -- 13.3.2 System-Level Tuning -- 13.4 Trimming Methods -- References -- Part III: Application -- Chapter 14 MEMS Inertial Sensors -- 14.1 Introduction -- 14.2 Accelerometers -- 14.2.1 Principles of Operation -- 14.2.2 Quasi-Static Accelerometers -- 14.2.2.1 Squeeze-Film Damping -- 14.2.2.2 Electromechanical Transduction in Accelerometers -- 14.2.2.3 Mechanical Noise in Accelerometers -- 14.2.3 Resonant Accelerometers -- 14.2.3.1 Electrostatic Spring-Softening -- 14.2.3.2 Acceleration Sensitivity in Resonant Accelerometers -- 14.3 Gyroscopes -- 14.3.1 Principles of Operation -- 14.3.1.1 Vibratory Gyroscopes -- 14.3.1.2 Mode-Split versus Mode-Matched Gyroscopes -- 14.3.2 Bulk-Acoustic Wave (BAW) Gyroscopes -- 14.3.2.1 Angular Gain -- 14.3.2.2 Zero-Rate Output
  • 2.3.2 Compressible Flows -- 2.3.2.1 Scaling Analysis -- 2.3.2.2 Numerical Results -- References -- Chapter 3 Damping in Resonant MEMS -- 3.1 Introduction -- 3.2 Air Damping -- 3.3 Surface Damping -- 3.4 Anchor Damping -- 3.5 Electrical Damping -- 3.6 Thermoelastic Dissipation (TED) -- 3.7 Akhiezer Effect (AKE) -- References -- Chapter 4 Parametrically Excited Micro- and Nanosystems -- 4.1 Introduction -- 4.2 Sources of Parametric Excitation in MEMS and NEMS -- 4.2.1 Parametric Excitation via Electrostatic Transduction -- 4.2.2 Other Sources of Parametric Excitation -- 4.3 Modeling the Underlying Dynamics-Variants of the Mathieu Equation -- 4.4 Perturbation Analysis -- 4.5 Linear, Steady-State Behaviors -- 4.6 Sources of Nonlinearity and Nonlinear Steady-State Behaviors -- 4.7 Complex Dynamics in Parametrically Excited Micro/Nanosystems -- 4.8 Combined Parametric and Direct Excitations -- 4.9 Select Applications -- 4.9.1 Resonant Mass Sensing -- 4.9.2 Inertial Sensing -- 4.9.3 Micromirror Actuation -- 4.9.4 Bifurcation Control -- 4.10 Some Parting Thoughts -- Acknowledgment -- References -- Chapter 5 Finite Element Modeling of Resonators -- 5.1 Introduction to Finite Element Analysis -- 5.1.1 Mathematical Fundamentals -- 5.1.1.1 Static Problems -- 5.1.1.2 Dynamic Problems (Modal Analysis) -- 5.1.2 Practical Implementation -- 5.1.2.1 Set Up -- 5.1.2.2 Processing -- 5.1.2.3 Post-processing -- 5.2 Application of FEA in MEMS Resonator Design -- 5.2.1 Modal Analysis -- 5.2.1.1 Mode Shape Analysis for Design Optimization -- 5.2.1.2 Modeling Process-Induced Variation -- 5.2.2 Loss Analysis -- 5.2.2.1 Anchor Loss -- 5.2.2.2 Thermoelastic Damping -- 5.2.3 Frequency Response Analysis -- 5.2.3.1 Spurious Mode Identification and Rejection -- 5.2.3.2 Filter Design -- 5.3 Summary -- References -- Part II: Implementation
  • 8.4 Modeling and Optimization of Single-Port Thermal-Piezoresistive Resonators -- 8.4.1 Thermo-Electro-Mechanical Modeling -- 8.4.2 Resonator Equivalent Electrical Circuit and Optimization -- 8.5 Examples of Thermally Actuated Resonant MEMS -- References -- Chapter 9 Nanoelectromechanical Systems (NEMS) -- 9.1 Introduction -- 9.1.1 Fundamental Studies -- 9.1.2 Transduction at the Nanoscale -- 9.1.3 Materials, Fabrication, and System Integration -- 9.1.4 Electronics -- 9.1.5 Nonlinear MEMS/NEMS Applications -- 9.2 Carbon-Based NEMS -- 9.3 Toward Functional Bio-NEMS -- 9.3.1 NEMS-Based Energy Harvesting: an Emerging Field -- 9.4 Summary and Outlook -- References -- Chapter 10 Organic Resonant MEMS Devices -- 10.1 Introduction -- 10.2 Device Designs -- 10.2.1 Conductive Polymer with Electrostatic Actuation -- 10.2.2 Dielectric Polymer with Polarization Force Actuation -- 10.2.3 Superparamagnetic Nanoparticle Composite with Magnetic Actuation -- 10.2.4 Metallized Polymer with Lorentz Force Actuation -- 10.3 Quality Factor of Polymeric Micromechanical Resonators -- 10.3.1 Quality Factor in Viscous Environment -- 10.3.2 Quality Factor of Relaxed Resonators in Vacuum -- 10.3.3 Quality Factor of Unrelaxed Resonators in Vacuum -- 10.4 Applications -- 10.4.1 Humidity Sensor -- 10.4.2 Vibrational Energy Harvesting -- 10.4.3 Artificial Cochlea -- References -- Chapter 11 Devices with Embedded Channels -- 11.1 Introduction -- 11.2 Theory -- 11.2.1 Effects of Fluid Density and Flow -- 11.2.2 Effects of Viscosity on the Quality Factor -- 11.2.3 Effect of Surface Reactions -- 11.2.4 Single Particle Measurements -- 11.3 Device Technology -- 11.3.1 Fabrication -- 11.3.2 Packaging Considerations -- 11.4 Applications -- 11.4.1 Measurements of Fluid Density and Mass Flow
  • Chapter 6 Capacitive Resonators -- 6.1 Introduction -- 6.2 Capacitive Transduction -- 6.3 Electromechanical Actuation -- 6.3.1 Electromechanical Force Derivation -- 6.3.2 Voltage Dependent Force Components -- 6.4 Capacitive Sensing and Motional Capacitor Topologies -- 6.4.1 Parallel-Moving Plates -- 6.4.2 Perpendicular Moving Plates -- 6.4.3 Electrostatic Spring Softening and Snap-In -- 6.4.4 Angular Moving Plates -- 6.5 Electrical Isolation -- 6.6 Capacitive Resonator Circuit Models -- 6.7 Capacitive Interfaces -- 6.7.1 Transimpedance Amplifier -- 6.7.2 High-Impedance Voltage Detection -- 6.7.3 Switched-Capacitor Detection -- 6.8 Conclusion -- Acknowledgment -- References -- Chapter 7 Piezoelectric Resonant MEMS -- 7.1 Introduction to Piezoelectric Resonant MEMS -- 7.2 Fundamentals of Piezoelectricity and Piezoelectric Resonators -- 7.3 Thin Film Piezoelectric Materials for Resonant MEMS -- 7.4 Equivalent Electrical Circuit of Piezoelectric Resonant MEMS -- 7.4.1 One-Port Piezoelectric Resonators -- 7.4.2 Two-Port Piezoelectric Resonators -- 7.4.3 Resonator Figure of Merit -- 7.5 Examples of Piezoelectric Resonant MEMS: Vibrations in Beams, Membranes, and Plates -- 7.5.1 Flexural Vibrations -- 7.5.2 Width-Extensional Vibrations -- 7.5.3 Thickness-Extensional and Shear Vibrations -- 7.6 Conclusions -- References -- Chapter 8 Electrothermal Excitation of Resonant MEMS -- 8.1 Basic Principles -- 8.1.1 Fundamental Equations for Electro-Thermo-Mechanical Transduction -- 8.1.2 Time Constants and Frequency Dependencies -- 8.2 Actuator Implementations -- 8.2.1 Thin-Film/Surface Actuators -- 8.2.2 Bulk Actuators -- 8.3 Piezoresistive Sensing -- 8.3.1 Fundamental Equations for Piezoresistive Sensing -- 8.3.2 Piezoresistor Implementations -- 8.3.3 Self-Sustained Thermal-Piezoresistive Oscillators
Control code
ocn908335689
Dimensions
unknown
Extent
1 online resource
File format
unknown
Form of item
online
Isbn
9783527676347
Media category
computer
Media MARC source
rdamedia
Media type code
c
Other physical details
illustrations
Quality assurance targets
unknown
http://library.link/vocab/recordID
.b32876890
Sound
unknown sound
Specific material designation
remote
System control number
  • (OCoLC)908335689
  • pebcs3527335455

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...