The Resource Road vehicle dynamics : fundamentals and modeling, Georg Rill

Road vehicle dynamics : fundamentals and modeling, Georg Rill

Label
Road vehicle dynamics : fundamentals and modeling
Title
Road vehicle dynamics
Title remainder
fundamentals and modeling
Statement of responsibility
Georg Rill
Creator
Subject
Language
eng
Member of
Cataloging source
StDuBDS
Dewey number
629.2
Illustrations
illustrations
Index
index present
LC call number
TL243
LC item number
.R55 2012
Literary form
non fiction
Nature of contents
bibliography
Series statement
Ground vehicle engineering series
Label
Road vehicle dynamics : fundamentals and modeling, Georg Rill
Publication
Note
Formerly CIP.
Bibliography note
Includes bibliographical references and index
http://library.link/vocab/branchCode
  • zbnus
  • glg
Contents
  • Machine generated contents note: 1.1.Units and Quantities -- 1.1.1.SI System -- 1.1.2.Tire Codes -- 1.2.Terminology -- 1.2.1.Vehicle Dynamics -- 1.2.2.Driver -- 1.2.3.Vehicle -- 1.2.4.Load -- 1.2.5.Environment -- 1.3.Definitions -- 1.3.1.Coordinate Systems -- 1.3.2.Design Position of Wheel Center -- 1.3.3.Toe-In, Toe-Out -- 1.3.4.Wheel Camber -- 1.3.5.Design Position of the Wheel Rotation Axis -- 1.3.6.Wheel Aligning Point -- 1.4.Multibody Dynamics Tailored to Ground Vehicles -- 1.4.1.Modeling Aspects -- 1.4.2.Kinematics -- 1.4.3.Equations of Motion -- 1.5.A Quarter Car Model -- 1.5.1.Modeling Details -- 1.5.2.Kinematics -- 1.5.3.Applied Forces and Torques -- 1.5.4.Equations of Motion -- 1.5.5.Simulation -- Exercises -- 2.1.Modeling Aspects -- 2.2.Deterministic Profiles -- 2.2.1.Bumps and Potholes -- 2.2.2.Sine Waves -- 2.3.Random Profiles -- 2.3.1.Statistical Properties -- 2.3.2.Classification of Random Road Profiles -- 2.3.3.Sinusoidal Approximation -- 2.3.4.Example --
  • Contents note continued: 2.3.5.Shaping Filter -- 2.3.6.Two-Dimensional Model -- Exercises -- 3.1.Introduction -- 3.1.1.Tire Development -- 3.1.2.Tire Composites -- 3.1.3.Tire Forces and Torques -- 3.1.4.Measuring Tire Forces and Torques -- 3.1.5.Modeling Aspects -- 3.1.6.Typical Tire Characteristics -- 3.2.Contact Geometry -- 3.2.1.Basic Approach -- 3.2.2.Local Track Plane -- 3.2.3.Tire Deflection -- 3.2.4.Static Contact Point -- 3.2.5.Length of Contact Patch -- 3.2.6.Contact Point Velocity -- 3.2.7.Dynamic Rolling Radius -- 3.3.Steady-State Forces and Torques -- 3.3.1.Wheel Load -- 3.3.2.Tipping Torque -- 3.3.3.Rolling Resistance -- 3.3.4.Longitudinal Force and Longitudinal Slip -- 3.3.5.Lateral Slip, Lateral Force, and Self-Aligning Torque -- 3.4.Combined Forces -- 3.4.1.Combined Slip -- 3.4.2.Suitable Approximation -- 3.4.3.Some Results -- 3.5.Bore Torque -- 3.5.1.Modeling Aspects -- 3.5.2.Maximum Torque -- 3.5.3.Simple Approach -- 3.5.4.Generalized Slip --
  • Contents note continued: 3.6.Different Influences on Tire Forces and Torques -- 3.6.1.Wheel Load -- 3.6.2.Friction -- 3.6.3.Camber -- 3.7.First-Order Tire Dynamics -- 3.7.1.Simple Dynamic Extension -- 3.7.2.Enhanced Force Dynamics -- 3.7.3.Enhanced Torque Dynamics -- 3.7.3.1.Self-Aligning Torque -- 3.7.3.2.Bore Torque -- 3.7.3.3.Parking Torque -- Exercises -- 4.1.Components and Concepts -- 4.1.1.Conventional Drive Train -- 4.1.2.Hybrid Drive -- 4.1.3.Electric Drive -- 4.2.Wheel and Tire -- 4.2.1.Wheel Dynamics -- 4.2.2.Eigen-Dynamics -- 4.2.2.1.Steady-State Tire Forces -- 4.2.2.2.Dynamic Tire Forces -- 4.2.3.Simple Vehicle Wheel Tire Model -- 4.2.3.1.Equations of Motion -- 4.2.3.2.Driving Torque -- 4.2.3.3.Braking Torque -- 4.2.3.4.Simulation Results -- 4.3.Differentials -- 4.3.1.Classic Design -- 4.3.2.Active Differentials -- 4.4.Generic Drive Train -- 4.5.Transmission -- 4.6.Clutch -- 4.7.Power Sources -- 4.7.1.Combustion Engine -- 4.7.2.Hybrid Drive -- Exercises --
  • Contents note continued: 5.1.Purpose and Components -- 5.2.Some Examples -- 5.2.1.Multipurpose Systems -- 5.2.2.Specific Systems -- 5.2.3.Steering Geometry -- 5.3.Steering Systems -- 5.3.1.Components and Requirements -- 5.3.2.Rack-and-Pinion Steering -- 5.3.3.Lever Arm Steering System -- 5.3.4.Toe Bar Steering System -- 5.3.5.Bus Steering System -- 5.3.6.Dynamics of a Rack-and-Pinion. Steering System -- 5.3.6.1.Equation of Motion -- 5.3.6.2.Steering Forces and Torques -- 5.3.6.3.Parking Effort -- 5.4.Kinematics of a Double Wishbone Suspension -- 5.4.1.Modeling Aspects -- 5.1.2.Position and Orientation -- 5.4.3.Constraint Equations -- 5.4.3.1.Control Arms and Wheel Body -- 5.4.3.2.Steering Motion -- 5.4.4.Velocities -- 5.4.5.Acceleration -- 5.4.6.Kinematic Analysis -- Exercises -- 6.1.Standard Force Elements -- 6.1.1.Springs -- 6.1.2.Anti-Roll Bar -- 6.1.3.Damper -- 6.1.4.Point-to-Point Force Elements -- 6.1.4.1.Generalized Forces -- 6.1.4.2.Example -- 6.1.5.Rubber Elements --
  • Contents note continued: 6.2.Dynamic Force Elements -- 6.2.1.Testing and Evaluating Procedures -- 6.2.1.1.Simple Approach -- 6.2.1.2.Sweep Sine Excitation -- 6.2.2.Spring Damper in Series -- 6.2.2.1.Modeling Aspects -- 6.2.2.2.Linear Characteristics -- 6.2.2.3.Nonlinear Damper Topmount Combination -- 6.2.3.General Dynamic Force Model -- 6.2.4.Hydro-Mount -- Exercises -- 7.1.Goals -- 7.2.From Complex to Simple Models -- 7.3.Basic Tuning -- 7.3.1.Natural Frequency and Damping Ratio -- 7.3.2.Minimum Spring Rate -- 7.3.3.Example -- 7.3.4.Undamped Eigenfrequencies -- 7.3.5.Influence of Damping -- 7.4.Optimal Damping -- 7.4.1.Disturbance Reaction Problem -- 7.4.2.Optimal Safety -- 7.4.3.Optimal Comfort -- 7.4.4.Example -- 7.5.Practical Aspects -- 7.5.1.General Remarks -- 7.5.2.Quarter Car Model on Rough Road -- 7.6.Nonlinear Suspension Forces -- 7.6.1.Progressive Spring -- 7.6.2.Nonlinear Spring and Nonlinear Damper -- 7.6.3.Some Results -- 7.7.Sky Hook Damper --
  • Contents note continued: 7.7.1.Modeling Aspects -- 7.7.2.Eigenfrequencies and Damping Ratios -- 7.7.3.Technical Realization -- 7.7.4.Simulation Results -- Exercises -- 8.1.Dynamic Wheel Loads -- 8.1.1.Simple Vehicle Model -- 8.1.2.Influence of Grade -- 8.1.3.Aerodynamic Forces -- 8.2.Maximum Acceleration -- 8.2.1.Tilting Limits -- 8.2.2.Friction Limits -- 8.3.Driving and Braking -- 8.3.1.Single Axle Drive -- 8.3.2.Braking at Single Axle -- 8.3.3.Braking Stability -- 8.3.4.Optimal Distribution of Drive and Brake Forces -- 8.3.5.Different Distributions of Brake Forces -- 8.3.6.Braking in a Turn -- 8.3.7.Braking on o-Split -- 8.3.8.Anti-Lock System -- 8.3.8.1.Basic Principle -- 8.3.8.2.Simple Model -- 8.4.Drive and Brake Pitch -- 8.1.1.Enhanced Planar Vehicle Model -- 8.4.2.Equations of Motion -- 8.4.3.Equilibrium -- 8.4.4.Driving and Braking -- 8.4.5.Drive Pitch -- 8.4.6.Break Pitch -- 8.4.7.Brake Pitch Pole -- Exercises -- 9.1.Kinematic Approach --
  • Contents note continued: 9.1.1.Kinematic Tire Model -- 9.1.2.Ackermann Geometry -- 9.1.3.Space Requirement -- 9.1.4.Vehicle Model with Trailer -- 9.1.4.1.Kinematics -- 9.1.4.2.Vehicle Motion -- 9.1.4.3.Entering a Curve -- 9.1.4.4.Trailer Motions -- 9.1.4.5.Course Calculations -- 9.2.Steady-State Cornering -- 9.2.1.Cornering Resistance -- 9.2.1.1.Two-Axled Vehicle -- 9.2.1.2.Four-Axled Vehicle -- 9.2.2.Overturning Limit -- 9.2.2.1.Static Stability Factor -- 9.2.2.2.Enhanced Rollover Model -- 9.2.3.Roll Support and Camber Compensation -- 9.2.4.Roll Center and Roll Axis -- 9.2.5.Wheel Load Transfer -- 9.3.Simple Handling Model -- 9.3.1.Modeling Concept -- 9.3.2.Kinematics -- 9.3.3.Tire Forces -- 9.3.4.Lateral Slips -- 9.3.5.Equations of Motion -- 9.3.6.Stability -- 9.3.6.1.Eigenvalues -- 9.3.6.2.Low-Speed Approximation -- 9.3.6.3.High-Speed Approximation -- 9.3.6.4.Critical Speed -- 9.3.6.5.Example -- 9.3.7.Steady-State Solution -- 9.3.7.1.Steering Tendency --
  • Contents note continued: 9.3.7.2.Side Slip Angle -- 9.3.7.3.Curve Radius -- 9.3.7.4.Lateral Slips -- 9.3.8.Influence of Wheel Load on Cornering Stiffness -- 9.4.Mechatronic Systems -- 9.4.1.Electronic Stability Control (ESC) -- 9.4.2.Steer-by-Wire -- Exercises -- 10.1.Three-Dimensional Vehicle Model -- 10.1.1.Model Structure -- 10.1.2.Position and Orientation -- 10.1.3.Velocities -- 10.1.4.Accelerations -- 10.1.5.Applied and Generalized Forces and Torques -- 10.1.6.Equations of Motion -- 10.2.Driver Model -- 10.2.1.Standard Model -- 10.2.2.Enhanced Model -- 10.2.3.Simple Approach -- 10.3.Standard Driving Maneuvers -- 10.3.1.Steady-State Cornering -- 10.3.2.Step Steer Input -- 10.3.3.Driving Straight Ahead -- 10.4.Coach with Different Loading Conditions -- 10.4.1.Data -- 10.4.2.Roll Steering -- 10.4.3.Steady-State Cornering -- 10.1.4.Step Steer Input -- 10.5.Different Rear Axle Concepts for a Passenger Car -- Exercises
Control code
000047608119
Dimensions
25 cm
Extent
xxix, 331 p.
Isbn
9781439838983
Isbn Type
(hbk.)
Lccn
2011034810
Other control number
40020186649
Other physical details
ill.
http://library.link/vocab/recordID
.b30230445
System control number
  • (OCoLC)495781648
  • js30230445

Library Locations

    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
    • Deakin University Library - Geelong Waurn Ponds CampusBorrow it
      75 Pigdons Road, Waurn Ponds, Victoria, 3216, AU
      -38.195656 144.304955
Processing Feedback ...