The Resource The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz
The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz
- Language
- eng
- Extent
- xiv, 303 p.
- Contents
-
- Contents note continued: 10.1.Klembeck's Theorem with Stability in the C2 Topology -- 10.2.Separating Boundary and Interior Points -- 10.3.Ian Graham's Theorem by Scaling -- 10.4.Proper Mappings Between Bounded Strongly Pseudoconvex Domains -- 11.Afterword
- Contents note continued: 3.5.Stability of the Geometry of the Bergman Metric -- 3.6.Further Observations on the Geometric Stability of the Bergman Curvature -- 4.Applications of Bergman Geometry -- 4.1.Applications of Stability near the Boundary -- 4.2.Bergman Representative Coordinates -- 4.3.Equivariant Embedding and Concrete Realization of Abstract Complex Structures -- 4.4.Semicontinuity of Automorphism Groups -- 4.5.Obtaining a Stable Extension -- 5.Lie Groups Realized as Automorphism Groups -- 5.1.Introduction -- 5.2.General Philosophy -- 5.3.The Saerens/Zame Proof -- 5.4.The Bedford/Dadok Proof -- 6.The Significance of Large Isotropy Groups -- 6.1.Complex Manifolds with Large Isotropy at One Point -- 6.2.Proof of Theorem 6.1.1: An Invariant Metric -- 6.3.Proof of Theorem 6.1.1: Biholomorphisms of Metric Balls -- 6.4.Proof of Theorem 6.1.1, Assuming Lemma A -- 6.5.Statement and Discussion of Lemma A --
- Contents note continued: 6.6.Alternative Viewpoints and the Modification for the Theorem in the Manifold Case -- 6.7.The Compact Manifold Case -- 7.Some Other Invariant Metrics -- 7.1.The Caratheodory Metric -- 7.2.The Kobayashi Metric and Distance -- 7.3.Riemann Surfaces and Curvature Conditions for Kobayashi Hyperbolicity -- 7.4.Remarks on Finsler Metrics and the CRF System -- 7.5.The Wu Metric -- 7.6.The Cheng-Yau Invariant Einstein-Kahler Metric -- 8.Automorphism Groups and Classification of Reinhardt Domains -- 8.1.Reinhardt Domains -- 8.2.Sunada's Work -- 8.3.Shimizu's Theorems -- 8.4.Non-Reinhardt Circular Domains -- 9.The Scaling Method, I -- 9.1.A Basic Example: Scaling Method in Dimension 1 -- 9.2.Higher Dimensional Scaling and the Wong-Rosay Theorem -- 9.3.A Theorem of Bedford and Pinchuk -- 9.4.Analytic Polyhedra with Noncompact Automorphism Group -- 9.5.The Greene-Krantz Conjecture -- 10.The Scaling Method, II --
- Machine generated contents note: 1.Preliminaries -- 1.1.Automorphism Groups -- 1.2.Some Fundamentals from Complex Analysis of Several Variables -- 1.3.Normal Families and Automorphisms -- 1.4.The Basic Examples -- 1.5.Orbit Accumulation Boundary Points -- 1.6.Holomorphic Vector Fields and Their Flows -- 2.Riemann Surfaces and Covering Spaces -- 2.1.Coverings of Riemann Surfaces -- 2.2.Covering Spaces and Invariant Metrics, I: Quotients of C -- 2.3.Covering Spaces and Invariant Metrics, II: Quotients of D -- 2.4.Covering Spaces and Automorphisms in General -- 2.5.Compact Quotients of D and Their Automorphisms -- 2.6.The Automorphism Group of a Riemann Surface of Genus at Least 2 -- 2.7.Automorphisms of Multiply Connected Domains -- 3.The Bergman Kernel and Metric -- 3.1.The Bergman Space and Kernel -- 3.2.The Bergman Metric on Complex Manifolds -- 3.3.Examples of Bergman Kernels and Metrics -- 3.4.The Bergman Metric on Strongly Pseudoconvex Domains --
- Isbn
- 9780817641399
- Label
- The geometry of complex domains
- Title
- The geometry of complex domains
- Statement of responsibility
- Robert E. Greene, Kang-Tae Kim, Steven G. Krantz
- Language
- eng
- Cataloging source
- StDuBDS
- Dewey number
- 514.223
- Illustrations
- illustrations
- Index
- index present
- Literary form
- non fiction
- Nature of contents
- bibliography
- Series statement
- Progress in mathematics
- Series volume
- v. 291
- Label
- The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz
- Bibliography note
- Includes bibliographical references and index
- http://library.link/vocab/branchCode
-
- net
- Contents
-
- Contents note continued: 10.1.Klembeck's Theorem with Stability in the C2 Topology -- 10.2.Separating Boundary and Interior Points -- 10.3.Ian Graham's Theorem by Scaling -- 10.4.Proper Mappings Between Bounded Strongly Pseudoconvex Domains -- 11.Afterword
- Contents note continued: 3.5.Stability of the Geometry of the Bergman Metric -- 3.6.Further Observations on the Geometric Stability of the Bergman Curvature -- 4.Applications of Bergman Geometry -- 4.1.Applications of Stability near the Boundary -- 4.2.Bergman Representative Coordinates -- 4.3.Equivariant Embedding and Concrete Realization of Abstract Complex Structures -- 4.4.Semicontinuity of Automorphism Groups -- 4.5.Obtaining a Stable Extension -- 5.Lie Groups Realized as Automorphism Groups -- 5.1.Introduction -- 5.2.General Philosophy -- 5.3.The Saerens/Zame Proof -- 5.4.The Bedford/Dadok Proof -- 6.The Significance of Large Isotropy Groups -- 6.1.Complex Manifolds with Large Isotropy at One Point -- 6.2.Proof of Theorem 6.1.1: An Invariant Metric -- 6.3.Proof of Theorem 6.1.1: Biholomorphisms of Metric Balls -- 6.4.Proof of Theorem 6.1.1, Assuming Lemma A -- 6.5.Statement and Discussion of Lemma A --
- Contents note continued: 6.6.Alternative Viewpoints and the Modification for the Theorem in the Manifold Case -- 6.7.The Compact Manifold Case -- 7.Some Other Invariant Metrics -- 7.1.The Caratheodory Metric -- 7.2.The Kobayashi Metric and Distance -- 7.3.Riemann Surfaces and Curvature Conditions for Kobayashi Hyperbolicity -- 7.4.Remarks on Finsler Metrics and the CRF System -- 7.5.The Wu Metric -- 7.6.The Cheng-Yau Invariant Einstein-Kahler Metric -- 8.Automorphism Groups and Classification of Reinhardt Domains -- 8.1.Reinhardt Domains -- 8.2.Sunada's Work -- 8.3.Shimizu's Theorems -- 8.4.Non-Reinhardt Circular Domains -- 9.The Scaling Method, I -- 9.1.A Basic Example: Scaling Method in Dimension 1 -- 9.2.Higher Dimensional Scaling and the Wong-Rosay Theorem -- 9.3.A Theorem of Bedford and Pinchuk -- 9.4.Analytic Polyhedra with Noncompact Automorphism Group -- 9.5.The Greene-Krantz Conjecture -- 10.The Scaling Method, II --
- Machine generated contents note: 1.Preliminaries -- 1.1.Automorphism Groups -- 1.2.Some Fundamentals from Complex Analysis of Several Variables -- 1.3.Normal Families and Automorphisms -- 1.4.The Basic Examples -- 1.5.Orbit Accumulation Boundary Points -- 1.6.Holomorphic Vector Fields and Their Flows -- 2.Riemann Surfaces and Covering Spaces -- 2.1.Coverings of Riemann Surfaces -- 2.2.Covering Spaces and Invariant Metrics, I: Quotients of C -- 2.3.Covering Spaces and Invariant Metrics, II: Quotients of D -- 2.4.Covering Spaces and Automorphisms in General -- 2.5.Compact Quotients of D and Their Automorphisms -- 2.6.The Automorphism Group of a Riemann Surface of Genus at Least 2 -- 2.7.Automorphisms of Multiply Connected Domains -- 3.The Bergman Kernel and Metric -- 3.1.The Bergman Space and Kernel -- 3.2.The Bergman Metric on Complex Manifolds -- 3.3.Examples of Bergman Kernels and Metrics -- 3.4.The Bergman Metric on Strongly Pseudoconvex Domains --
- Control code
- 000047322685
- Dimensions
- 25 cm
- Extent
- xiv, 303 p.
- Isbn
- 9780817641399
- Other physical details
- ill.
- http://library.link/vocab/recordID
- .b27155067
- System control number
- springer0817641394
Embed (Experimental)
Settings
Select options that apply then copy and paste the RDF/HTML data fragment to include in your application
Embed this data in a secure (HTTPS) page:
Layout options:
Include data citation:
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.deakin.edu.au/portal/The-geometry-of-complex-domains-Robert-E./DlhM3BSKEUE/" typeof="CreativeWork http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.deakin.edu.au/portal/The-geometry-of-complex-domains-Robert-E./DlhM3BSKEUE/">The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.library.deakin.edu.au/#Deakin%20University%20Library"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.deakin.edu.au/">Deakin University Library</a></span></span></span></span></div>
Note: Adjust the width and height settings defined in the RDF/HTML code fragment to best match your requirements
Preview
Cite Data - Experimental
Data Citation of the Item The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz
Copy and paste the following RDF/HTML data fragment to cite this resource
<div class="citation" vocab="http://schema.org/"><i class="fa fa-external-link-square fa-fw"></i> Data from <span resource="http://link.library.deakin.edu.au/portal/The-geometry-of-complex-domains-Robert-E./DlhM3BSKEUE/" typeof="CreativeWork http://bibfra.me/vocab/lite/Item"><span property="name http://bibfra.me/vocab/lite/label"><a href="http://link.library.deakin.edu.au/portal/The-geometry-of-complex-domains-Robert-E./DlhM3BSKEUE/">The geometry of complex domains, Robert E. Greene, Kang-Tae Kim, Steven G. Krantz</a></span> - <span property="offers" typeOf="Offer"><span property="offeredBy" typeof="Library ll:Library" resource="http://link.library.deakin.edu.au/#Deakin%20University%20Library"><span property="name http://bibfra.me/vocab/lite/label"><a property="url" href="http://link.library.deakin.edu.au/">Deakin University Library</a></span></span></span></span></div>